EconPapers    
Economics at your fingertips  
 

Perturbation theory for Hermitian quadratic eigenvalue problem – damped and simultaneously diagonalizable systems

Ninoslav Truhar, Zoran Tomljanović and Ren-Cang Li

Applied Mathematics and Computation, 2020, vol. 371, issue C

Abstract: The main contribution of this paper is a novel approach to the perturbation theory of a structured Hermitian quadratic eigenvalue problems (λ2M+λD+K)x=0. We propose a new concept without linearization, considering two structures: general quadratic eigenvalue problems (QEP) and simultaneously diagonalizable quadratic eigenvalue problems (SDQEP). Our first two results are upper bounds for the difference |∥X2*MX˜1∥F2−∥X2*MX1∥F2|, and for ∥X2*MX˜1−X2*MX1∥F, where the columns of X1=[x1,…,xk] and X2=[xk+1,…,xn] are linearly independent right eigenvectors and M is positive definite Hermitian matrix. As an application of these results we present an eigenvalue perturbation bound for SDQEP. The third result is a lower and an upper bound for ∥sinΘ(X1,X˜1)∥F, where Θ is a matrix of canonical angles between the eigensubspaces X1 and X˜1,X1 is spanned by the set of linearly independent right eigenvectors of SDQEP and X˜1 is spanned by the corresponding perturbed eigenvectors. The quality of the mentioned results have been illustrated by numerical examples.

Keywords: Quadratic matrix eigenvalue problem; Perturbation theory; sin Θ theorem; Damped mechanical system (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319309130
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:371:y:2020:i:c:s0096300319309130

DOI: 10.1016/j.amc.2019.124921

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:371:y:2020:i:c:s0096300319309130