Multiscale mortar expanded mixed discretization of nonlinear elliptic problems
Muhammad Arshad and
Eun-Jae Park
Applied Mathematics and Computation, 2020, vol. 371, issue C
Abstract:
We consider the discretization of nonlinear second order elliptic partial differential equations by multiscale mortar expanded mixed method. This is a domain decomposition method in which the model problem is restricted to the small pieces by dividing the computational domain into the non-overlapping subdomains. An unknown (Lagrange multiplier) is introduced on the interfaces which serve as pressure Dirichlet boundary condition for local subdomain problems. A finite element space is defined on interface to approximate the pressure boundary such that the normal fluxes match weakly on interface.We demonstrated solvability of discretization, and established a priori L2-error estimates for both vector and scalar approximations. We proved the optimal order convergence rates by an appropriate choice of mortar space and polynomial degree of approximation. The uniqueness of discrete problem is shown for sufficiently small values of mesh size. An error estimate for the mortar pressure is derived via linear interface formulation with pressure dependent coefficient. We also present the analysis of the linear second order elliptic problem and prove the similar results. The computational experiments are presented to validate theory.
Keywords: Nonlinear problem; Multiscale method; Expanded mixed finite element; Mortar mixed method; Multiblock; Error estimates; Domain decomposition (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319309245
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:371:y:2020:i:c:s0096300319309245
DOI: 10.1016/j.amc.2019.124932
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().