EconPapers    
Economics at your fingertips  
 

Chromatic cost coloring of weighted bipartite graphs

Tytus Pikies and Marek Kubale

Applied Mathematics and Computation, 2020, vol. 375, issue C

Abstract: Given a graph G and a sequence of color costs C, the CostColoring optimization problem consists in finding a coloring of G with the smallest total cost with respect to C. We present an analysis of this problem with respect to weighted bipartite graphs. We specify for which finite sequences of color costs the problem is NP-hard and we present an exact polynomial algorithm for the other finite sequences. These results are then extended to a substantial class of infinite sequences. We show that these results on both types of sequences partially transfer to unweighted bipartite graphs.

Keywords: Chromatic cost coloring; Optimum cost chromatic partition; Weighted graph; Bipartite graph; Approximation algorithm; Chromatic cost 3-pseudocoloring (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320300424
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:375:y:2020:i:c:s0096300320300424

DOI: 10.1016/j.amc.2020.125073

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:375:y:2020:i:c:s0096300320300424