Stability of finite perturbations of the phase transition interface for one problem of water evaporation in a porous medium
Vladimir A. Shargatov,
Sergey V. Gorkunov and
Il’ichev, Andrej T.
Applied Mathematics and Computation, 2020, vol. 378, issue C
Abstract:
We study global dynamics of phase transition evaporation interfaces in horizontally extended domains of porous layers where a water located over a vapor. The derivation of the model equation describing the secondary structures, which bifurcate from the ground state in a small neighborhood of the instability threshold in the case of a quasi-stationary approach to the description of the diffusion process, is presented. The resulting equation is reduced to the equation in the form of Kolmogorov-Petrovsky-Piskounov. The obtained approximate equation predicts the existence of stationary solutions in the full problem. To verify the obtained results, the numerical solution of the problem of the motion of the phase transition interface is performed using the original program code developed by the authors. The results of numerical simulation are used to verify the possibility of using stationary solutions obtained in the weakly nonlinear approximation to determine the scenario for the development of the initial localized finite amplitude perturbation. It is shown that the obtained approximate stationary solutions accurately predict the behavior of the perturbation in the vicinity of the turning point of the bifurcation diagram. A modification of the formulas describing an approximate stationary soliton-like solution is proposed in the case when the perturbation amplitude is comparable with the height of a low-permeable layer of a porous medium in which the phase transition interface is located. By numerical simulation it is shown that this modified approximate solution is in good agreement with the results of numerical calculation for the full problem.
Keywords: Porous medium; Evaporation; Interface; Turning point bifurcation; Stability; KPP equation (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320301776
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:378:y:2020:i:c:s0096300320301776
DOI: 10.1016/j.amc.2020.125208
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().