Constrained consistency enforcement in AHP
Julio Benítez,
Silvia Carpitella,
Antonella Certa and
Joaquín Izquierdo
Applied Mathematics and Computation, 2020, vol. 380, issue C
Abstract:
Decision-making in the presence of intangible elements must be based on a robust, but subtle, balance between expert know-how and judgment consistency when eliciting that know-how. This balance is frequently achieved as a trade-off reached after a feedback process softens the tension frequently found between one force steadily pulling towards (full) consistency, and another force driven by expert feeling and opinion. The linearization method, developed by the authors in the framework of the analytic hierarchy process, is a pull-towards-consistency mechanism that shows the path from an inconsistent body of judgment elicited from an expert towards consistency, by suggesting optimal changes to the expert opinions. However, experts may be reluctant to alter some of their issued opinions, and may wish to impose constraints on the adjustments suggested by the consistency-enforcement mechanism. In this paper, using the classical Riesz representation theorem, the linearization method is accommodated to consider various types of constraints imposed by experts during the abovementioned feedback process.
Keywords: Decision-making; Expert judgment; Consistency; Consensus; AHP (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320302423
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:380:y:2020:i:c:s0096300320302423
DOI: 10.1016/j.amc.2020.125273
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().