EconPapers    
Economics at your fingertips  
 

Weighted Sp-pseudo S-asymptotic periodicity and applications to Volterra integral equations

Bing He, Qi-Ru Wang and Jun-Fei Cao

Applied Mathematics and Computation, 2020, vol. 380, issue C

Abstract: This paper is related to the function space formed by weighted Sp-pseudo S-asymptotic periodicity and their applications. Initially, the translation invariance and completeness of the function space are investigated. Additionally, the composition theorem and convolution operator generated by Lebesgue integrable functions are presented. Finally, existence and uniqueness of solutions with weighted Sp-pseudo S-asymptotic periodicity for two classes of Volterra equations are proved by using the results obtained above, and some concrete examples are given. The methods mainly include Minkowski’s inequality, convolution inequality, contraction mapping principle, and especially the generalized Minkowski’s inequality. Our results extend some known results on asymptotic periodicity.

Keywords: Banach space; weighted Sp-pseudo S-asymptotic periodicity; composition theorem and convolution operator; (generalized) Minkowski’s inequality; Volterra integral equations (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320302447
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:380:y:2020:i:c:s0096300320302447

DOI: 10.1016/j.amc.2020.125275

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:380:y:2020:i:c:s0096300320302447