EconPapers    
Economics at your fingertips  
 

Basis functions for residual stresses

Sankalp Tiwari and Anindya Chatterjee

Applied Mathematics and Computation, 2020, vol. 386, issue C

Abstract: We consider arbitrary preexisting residual stress states in arbitrarily shaped, unloaded bodies. These stresses must be self-equilibrating and traction free. Common treatments of the topic tend to focus on either the mechanical origins of the stress, or methods of stress measurement at certain locations. Here we take the stress field as given and consider the problem of approximating any such stress field, in a given body, as a linear combination of predetermined fields which can serve as a basis. We consider planar stress states in detail, and introduce an extremization problem that leads to a linear eigenvalue problem. Eigenfunctions of that problem form an orthonormal basis for all possible residual stress states of sufficient smoothness. In numerical examples, convergence of the approximating stress fields is demonstrated in the L2 norm for continuous stress fields as well as for a stress field with a simple discontinuity. Finally, we outline the extension of our theory to three dimensional bodies and states of stress. Our approach can be used to describe arbitrary preexisting residual stress states in arbitrarily shaped bodies using basis functions that are determined by the body geometry alone.

Keywords: Residual stresses; Basis functions; Interpolation functions (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320304276
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304276

DOI: 10.1016/j.amc.2020.125468

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304276