EconPapers    
Economics at your fingertips  
 

Robust hybrid schemes of higher order for singularly perturbed convection-diffusion problems

Relja Vulanović and Thái Anh Nhan

Applied Mathematics and Computation, 2020, vol. 386, issue C

Abstract: A class of linear singularly perturbed convection-diffusion problems in one dimension is discretized on the Shishkin mesh using hybrid higher-order finite-difference schemes. Under appropriate conditions, pointwise convergence uniform in the perturbation parameter ε is proved for one of the discretizations. This is done by the preconditioning approach, which enables the proof of ε-uniform stability and ε-uniform consistency, both in the maximum norm. The order of convergence is almost 3 when ε is sufficiently small.

Keywords: Singular perturbation; Convection-diffusion; Finite differences; Hybrid scheme; Shishkin mesh; Uniform stability; Uniform convergence; Preconditioning (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320304537
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304537

DOI: 10.1016/j.amc.2020.125495

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304537