A level-set multigrid technique for nonlinear diffusion in the numerical simulation of marble degradation under chemical pollutants
A. Coco,
M. Semplice and
S. Serra Capizzano
Applied Mathematics and Computation, 2020, vol. 386, issue C
Abstract:
Having in mind the modelling of marble degradation under chemical pollutants, e.g. the sulfation process, we consider governing nonlinear diffusion equations and their numerical approximation. The space domain of a computation is the pristine marble object. In order to accurately discretize it while maintaining the simplicity of finite difference discretizations, the domain is described using a level-set technique. A uniform Cartesian grid is laid over a box containing the domain, but the solution is defined and updated only in the grid nodes that lie inside the domain, the level-set being employed to select them and to impose accurately the boundary conditions. We use a Crank-Nicolson scheme in time, while for the space variables the discretization is performed by a standard Finite-Difference scheme for grid points inside the domain and by a ghost-cell technique on the ghost points (by using boundary conditions). The solution of the large nonlinear system is obtained by a Newton-Raphson procedure and a tailored multigrid technique is developed for the inner linear solvers. The numerical results, which are very satisfactory in terms of reconstruction quality and of computational efficiency, are presented and discussed at the end of the paper.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320304616
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304616
DOI: 10.1016/j.amc.2020.125503
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().