Contaminant transport forecasting in the subsurface using a Bayesian framework
A. Al-Mamun,
J. Barber,
V. Ginting,
F. Pereira and
A. Rahunanthan
Applied Mathematics and Computation, 2020, vol. 387, issue C
Abstract:
In monitoring subsurface aquifer contamination, we want to predict quantities—fractional flow curves of pollutant concentration—using subsurface fluid flow models with expertise and limited data. A Bayesian approach is considered here and the complexity associated with the simulation study presents an ongoing practical challenge. We use a Karhunen–Loève expansion for the permeability field in conjunction with GPU computing within a two–stage Markov Chain Monte Carlo (MCMC) method. Further reduction in computing costs is addressed by running several MCMC chains. We compare convergence criteria to quantify the uncertainty of predictions. Our contributions are two-fold: we first propose a fitting procedure for the Multivariate Potential Scale Reduction Factor (MPSRF) data that allows us to estimate the number of iterations for convergence. Then we present a careful analysis of ensembles of fractional flow curves suggesting that, for the problem at hand, the number of iterations required for convergence through the MPSRF analysis is excessive. Thus, for practical applications, our results provide an indication that an analysis of the posterior distributions of quantities of interest provides a reliable criterion to terminate MCMC simulations for quantifying uncertainty.
Keywords: MCMC; Regularization; Two–stage proposal distribution; Uncertainty quantification; Convergence analysis; MPSRF (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319309725
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:387:y:2020:i:c:s0096300319309725
DOI: 10.1016/j.amc.2019.124980
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().