Analytical solution for one-dimensional non-Darcy flow with bilinear relation in porous medium caused by line source
Yang Zhou,
Li-ying Zhang and
Tao Wang
Applied Mathematics and Computation, 2021, vol. 392, issue C
Abstract:
One-dimensional non-Darcy flow in a porous medium caused by a line source is investigated. Owing to several reasons, a bilinear relation between the fluid velocity and the pressure gradient is considered, and the problem can be seen as an extension of a special one-phase free boundary problem reported in literature to a two-phase situation. An analytical solution for the problem is established based on the similarity type general solution of the governing equation. The analytical solution contains an unknown coefficient, which describes the free boundary movement and needs to be determined by a nonlinear equation, and the existence and uniqueness of this coefficient is proven. A numerical solution is also developed using the finite volume method, and special attention is spent on the two control volumes near the free boundary location so as to track the movement of the free boundary accurately. Computational examples are presented. The application of the analytical solution as a benchmark is introduced, and the accuracy of the numerical solution is verified. The non-Darcy flow for boreholes with different radii is studied, and the error caused by neglecting the size of borehole is discussed. The non-Darcy flow with a bilinear relation is compared with that with a threshold pressure gradient, and the error caused by neglecting the permeability under low pressure gradients is analyzed.
Keywords: Free boundary problem; Analytical solution; Porous medium; Non-Darcy flow; Bilinear relation; Numerical solution (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320306275
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:392:y:2021:i:c:s0096300320306275
DOI: 10.1016/j.amc.2020.125674
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().