EconPapers    
Economics at your fingertips  
 

Parameter-uniform approximation on equidistributed meshes for singularly perturbed parabolic reaction-diffusion problems with Robin boundary conditions

Sunil Kumar, Sumit, and Higinio Ramos

Applied Mathematics and Computation, 2021, vol. 392, issue C

Abstract: In this work we develop a parameter-uniform numerical method on equidistributed meshes for solving a class of singularly perturbed parabolic reaction-diffusion problems with Robin boundary conditions. The discretization consists of a modified Euler scheme in time, a central difference scheme in space, and a special finite difference scheme for the Robin boundary conditions. A uniform mesh is used in the time direction while the mesh in the space direction is generated via the equidistribution of a suitably chosen monitor function. We discuss error analysis and prove that the method is parameter-uniformly convergent of order two in space and order one in time. To support the theoretical result, some numerical experiments are performed.

Keywords: Boundary layers; Robin boundary conditions; Adaptive mesh; Equidistribution principle (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320306305
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:392:y:2021:i:c:s0096300320306305

DOI: 10.1016/j.amc.2020.125677

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:392:y:2021:i:c:s0096300320306305