EconPapers    
Economics at your fingertips  
 

Iteratively regularized Landweber iteration method: Convergence analysis via Hölder stability

Gaurav Mittal and Ankik Kumar Giri

Applied Mathematics and Computation, 2021, vol. 392, issue C

Abstract: In this paper, the local convergence of Iteratively regularized Landweber iteration method is investigated for solving non-linear inverse problems in Banach spaces. Our analysis mainly relies on the assumption that the inverse mapping satisfies the Hölder stability estimate locally. We consider both noisy as well as non-noisy data in our analysis. Under the a-priori choice of stopping index for noisy data, we show that the iterates remain in a certain ball around exact solution and obtain the convergence rates. The convergence of the Iteratively regularized Landweber iterates to the exact solution is shown under certain assumptions in the case of non-noisy data and as a by-product, under different conditions, two different convergence rates are obtained.

Keywords: Iterative regularization; Nonlinear ill-posed problems; Hölder stability estimates (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320306974
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:392:y:2021:i:c:s0096300320306974

DOI: 10.1016/j.amc.2020.125744

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:392:y:2021:i:c:s0096300320306974