A class of structure-preserving discontinuous Galerkin variational time integrators for Birkhoffian systems
Chunqiu Wei,
Lin He,
Huibin Wu and
Hairui Wen
Applied Mathematics and Computation, 2021, vol. 393, issue C
Abstract:
Accurate time integrators that preserving Birkhoffian structure are of great practical use for Birkhoffian systems. In this paper, a class of structure-preserving discontinuous Galerkin variational integrators (DGVIs) is presented. Start from the Pfaff action functional, the technique of variational integrators combined with discontinuous Galerkin time discretization is used to derive numerical schemes for Birkhoffian systems. For the derived DGVIs, symplecticity is proved rigorously through the preserving of particular 2-forms induced by these integrators. Linear stability and order of accuracy of the DGVIs are illustrated considering the example of linear damped oscillators. The order of accuracy and the property of preserving conserved quantities of the developed DGVIs are also confirmed by numerical examples. Comparisons are made with several numerical schemes such as backward/forward Euler, Runge–Kutta and RBF methods to show the advantages of DGVIs in preserving the Birkhoffians.
Keywords: Symplectic methods; Variational integrators; Discontinuous Galerkin; Birkhoffian systems (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320307037
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:393:y:2021:i:c:s0096300320307037
DOI: 10.1016/j.amc.2020.125750
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().