A novel point inclusion test for convex polygons based on Voronoi tessellations
Rahman Salim Zengin and
Volkan Sezer
Applied Mathematics and Computation, 2021, vol. 399, issue C
Abstract:
The point inclusion tests for polygons, in other words the point-in-polygon (PIP) algorithms, are fundamental tools for many scientific fields related to computational geometry, and they have been studied for a long time. The PIP algorithms get direct or indirect geometric definition of a polygonal entity, and validate its containment of a given point. The PIP algorithms, which are working directly on the geometric entities, derive linear boundary definitions for the edges of the polygons. Moreover, almost all direct test methods rely on the two-point form of the line equation to partition the space into half-spaces. Voronoi tessellations use an alternate approach for half-space partitioning. Instead of line equation, distance comparison between generator points is used to accomplish the same task. Voronoi tessellations consist of convex polygons, which are defined between generator points. Therefore, Voronoi tessellations have become an inspiration for us to develop a new approach of the PIP testing, specialized for convex polygons. The equations, essential to the conversion of a convex polygon to a Voronoi polygon, are derived. As a reference, a very standard convex PIP testing algorithm, the sign of offset, is selected for comparison. For generalization of the comparisons, the ray crossingalgorithm is used as another reference. All algorithms are implemented as vector and matrix operations without any branching. This enabled us to benefit from the CPU optimizations of the underlying linear algebra libraries. Experimentation showed that, our proposed algorithm can have comparable performance characteristics with the reference algorithms. Moreover, it has simplicity, both from a geometric representation and the mental model.
Keywords: Point inclusion test; Point in polygon; Convex polygon; Voronoi tessellations (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321000497
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:399:y:2021:i:c:s0096300321000497
DOI: 10.1016/j.amc.2021.126001
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().