EconPapers    
Economics at your fingertips  
 

A differential geometric approach to time series forecasting

Babak Emami

Applied Mathematics and Computation, 2021, vol. 402, issue C

Abstract: A differential geometry based approach to time series forecasting is proposed. Given observations over time of a set of correlated variables, it is assumed that these variables are components of vectors tangent to a real differentiable manifold. Each vector belongs to the tangent space at a point on the manifold, and the collection of all vectors forms a path on the manifold, parametrized by time. We compute a manifold connection such that this path is a geodesic. The future of the path can then be computed by solving the geodesic equations subject to appropriate boundary conditions. This yields a forecast of the time series variables.

Keywords: Time series; Forecast; Manifolds; Geodesic (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321001983
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:402:y:2021:i:c:s0096300321001983

DOI: 10.1016/j.amc.2021.126150

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:402:y:2021:i:c:s0096300321001983