EconPapers    
Economics at your fingertips  
 

Properties and computation of continuous-time solutions to linear systems

Predrag S. Stanimirović, Vasilios N. Katsikis, Long Jin and Dijana Mosić

Applied Mathematics and Computation, 2021, vol. 405, issue C

Abstract: We investigate solutions to the system of linear equations (SoLE) in both the time-varying and time-invariant cases, using both gradient neural network (GNN) and Zhang neural network (ZNN) designs. Two major limitations should be overcome. The first limitation is the inapplicability of GNN models in time-varying environment, while the second constraint is the possibility of using the ZNN design only under the presence of invertible coefficient matrix. In this paper, by overcoming the possible limitations, we suggest, in all possible cases, a suitable solution for a consistent or inconsistent linear system. Convergence properties are investigated as well as exact solutions.

Keywords: Zhang neural network; Gradient neural network; Dynamical system; Generalized inverse; Linear system (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321003325
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:405:y:2021:i:c:s0096300321003325

DOI: 10.1016/j.amc.2021.126242

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:405:y:2021:i:c:s0096300321003325