EconPapers    
Economics at your fingertips  
 

Asymptotic analysis of a two-phase Stefan problem in annulus: Application to outward solidification in phase change materials

Minghan Xu, Saad Akhtar, Ahmad F. Zueter, Mahmoud A. Alzoubi, Laxmi Sushama and Agus P. Sasmito

Applied Mathematics and Computation, 2021, vol. 408, issue C

Abstract: Stefan problems provide one of the most fundamental frameworks to capture phase change processes. The problem in cylindrical coordinates can model outward solidification, which ensures the thermal design and operation associated with phase change materials (PCMs). However, this moving boundary problem is highly nonlinear in most circumstances. Exact solutions are restricted to certain domains and boundary conditions. It is therefore vital to develop approximate analytical solutions based on physically tangible assumptions, e.g., a small Stefan number. A great amount of work has been done in one-phase Stefan problems, where the initial state is at its fusion temperature, yet very few literature has considered two-phase problems particularly in cylindrical coordinates. This paper conducts an asymptotic analysis for a two-phase Stefan problem for outward solidification in a hollow cylinder, consisting of three temporal and four spatial scales. The results are compared with the enthalpy method that simulates a mushy region between two phases by numerical iterations, rather than a sharp interface in Stefan problems. After studying both mathematical models, the role of mushy-zone thickness in the enthalpy method is also unveiled. Moreover, a wide range of geometric ratios, thermophysical properties and Stefan numbers are selected from the literature to explore their effects on the developed model with regards to interface motion and temperature profile. It can be concluded that the asymptotic solution is capable of tracking the moving interface and evaluating the transient temperature for various geometric ratios and thermophysical properties in PCMs. The accuracy of this solution is found to be affected by Stefan number only, and the computational cost is much less compared with the enthalpy method and other numerical schemes.

Keywords: Phase change; Two-phase Stefan problems; Outward solidification; Analytical solution; Asymptotic analysis; Phase change material (PCM) (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630032100432X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:408:y:2021:i:c:s009630032100432x

DOI: 10.1016/j.amc.2021.126343

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:408:y:2021:i:c:s009630032100432x