EconPapers    
Economics at your fingertips  
 

Generalized attenuated ray transforms and their integral angular moments

Evgeny Yu. Derevtsov, Yuriy S. Volkov and Thomas Schuster

Applied Mathematics and Computation, 2021, vol. 409, issue C

Abstract: In this article generalized attenuated ray transforms (ART) and integral angular moments are investigated. Starting from the Radon transform, the attenuated ray transform and the longitudinal ray transform, we derive the concept of ART-operators of order k over functions defined on the phase space and depending on time. The ART-operators are generalized for complex-valued absorption coefficient as well as weight functions of polynomial and exponential type. Connections between ART operators of various orders are established by means of the application of the linear part of a transport equation. These connections lead to inhomogeneous differential equations of order (k+1) for the ART of order k. Uniqueness theorems for the corresponding boundary-value and initial boundary-value problems are proved. Properties of integral angular moments of order p are considered and connections between the moments of different orders are deduced. A close connection of the considered operators with mathematical models for tomography, physical optics and integral geometry allows to treat the inversion of ART of order k as an inverse problem of determining the right-hand side of a corresponding differential equation.

Keywords: Tomography; Attenuated ray transform; Transport equation; Boundary-value problem; Uniqueness theorem; Integral angular moment (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320304525
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:409:y:2021:i:c:s0096300320304525

DOI: 10.1016/j.amc.2020.125494

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:409:y:2021:i:c:s0096300320304525