A Simulink-based software solution using the Infinity Computer methodology for higher order differentiation
Alberto Falcone,
Alfredo Garro,
Marat S. Mukhametzhanov and
Yaroslav D. Sergeyev
Applied Mathematics and Computation, 2021, vol. 409, issue C
Abstract:
This paper is dedicated to numerical computation of higher order derivatives in Simulink. In this paper, a new module has been implemented to achieve this purpose within the Simulink-based Infinity Computer solution, recently introduced by the authors. This module offers several blocks to calculate higher order derivatives of a function given by the arithmetic operations and elementary functions. Traditionally, this can be done in Simulink using finite differences only, for which it is well-known that they can be characterized by instability and low accuracy. Moreover, the proposed module allows to calculate higher order Lie derivatives embedded in the numerical solution to Ordinary Differential Equations (ODEs). Traditionally, Simulink does not offer any practical solution for this case without using difficult external libraries and methodologies, which are domain-specific, not general-purpose and have their own limitations. The proposed differentiation module bridges this gap, is simple and does not require any additional knowledge or skills except basic knowledge of the Simulink programming language. Finally, the block for constructing the Taylor expansion of the differentiated function is also proposed, adding so another efficient numerical method for solving ODEs and for polynomial approximation of the functions. Numerical experiments on several classes of test problems confirm advantages of the proposed solution.
Keywords: Simulink; Computer simulation and modelling; The Infinity Computer; Scientific computing; Numerical differentiation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320305610
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:409:y:2021:i:c:s0096300320305610
DOI: 10.1016/j.amc.2020.125606
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().