EconPapers    
Economics at your fingertips  
 

Non-separation method-based robust finite-time synchronization of uncertain fractional-order quaternion-valued neural networks

Hong-Li Li, Cheng Hu, Long Zhang, Haijun Jiang and Jinde Cao

Applied Mathematics and Computation, 2021, vol. 409, issue C

Abstract: In this paper, robust finite-time synchronization (F-TS) issue is addressed for a class of uncertain fractional-order quaternion-valued neural networks by employing non-separation method instead of separation method. First, a general fractional differential inequality is developed to provide new insight into the research about finite-time stability and synchronization of fractional-order systems. Next, quaternion-valued feedback controller and quaternion-valued adaptive controller are designed. On the basis of the newly developed inequality, quaternion inequality techniques, together with the properties of fractional calculus and reduction to absurdity, some easily-verified algebraic criteria for robust F-TS are established, and the settling time for robust F-TS is explicitly reckoned, which depends on not only the controller parameters but also the initial values and order of the considered systems. Eventually, numerical results are provided to substantiate our robust F-TS criteria.

Keywords: Robust finite-time synchronization; Uncertain parameters; Fractional-order; Quaternion-valued neural networks (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321004665
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:409:y:2021:i:c:s0096300321004665

DOI: 10.1016/j.amc.2021.126377

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:409:y:2021:i:c:s0096300321004665