EconPapers    
Economics at your fingertips  
 

Rotation snark, Berge-Fulkerson conjecture and Catlin’s 4-flow reduction

Siyan Liu, Rong-Xia Hao and Cun-Quan Zhang

Applied Mathematics and Computation, 2021, vol. 410, issue C

Abstract: It is conjectured by Berge and Fulkerson that every bridgeless cubic graph has six perfect matchings such that each edge is contained in exactly two of them. An infinite family R, of cyclically 5-edge-connected rotation snarks, was discovered in [European J. Combin. 2021] by Máčajová and Škoviera. In this paper, the Berge-Fulkerson conjecture is verified for the family R, and furthermore, a sup-family of R. Catlin’s contractible configuration and Tutte’s integer flow are applied here as the key methods.

Keywords: Berge-Fulkerson conjecture; Perfect matching; Snark; Rotation snark; 4-Circuit reduction (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321005300
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:410:y:2021:i:c:s0096300321005300

DOI: 10.1016/j.amc.2021.126441

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:410:y:2021:i:c:s0096300321005300