EconPapers    
Economics at your fingertips  
 

On the intersection graph of the disks with diameters the sides of a convex n-gon

Luis H. Herrera and Pablo Pérez-Lantero

Applied Mathematics and Computation, 2021, vol. 411, issue C

Abstract: Given a convex n-gon, we can draw n disks (called side disks) where each disk has a different side of the polygon as diameter and the midpoint of the side as its center. The intersection graph of such disks is the undirected graph with vertices the n disks and two disks are adjacent if and only if they have a point in common. Such a graph was introduced by Huemer and Pérez-Lantero (Discrete Mathematics, 2020), proved to be planar and Hamiltonian. In this paper, we study further combinatorial properties of this graph. We prove that the treewidth is at most 3, by showing an O(n)-time algorithm that builds a tree decomposition of width at most 3, given the polygon as input. This implies that we can construct the intersection graph of the side disks in O(n) time. We further study the independence number, which is the maximum number of pairwise disjoint disks. The planarity condition implies that for every convex n-gon we can select at least ⌈n/4⌉ pairwise disjoint disks, and we prove that for every n≥3 there exist convex n-gons in which we cannot select more than this number. Finally, we show that our class of graphs includes all outerplanar Hamiltonian graphs except the cycle of length four, and that it is a proper subclass of the planar Hamiltonian graphs.

Keywords: Convex polygon; Intersection graph; Disks; Treewidth (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321005610
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321005610

DOI: 10.1016/j.amc.2021.126472

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321005610