Quantized model-free adaptive iterative learning bipartite consensus tracking for unknown nonlinear multi-agent systems
Huarong Zhao,
Li Peng and
Hongnian Yu
Applied Mathematics and Computation, 2022, vol. 412, issue C
Abstract:
This paper considers the data quantization problem for a class of unknown nonaffine nonlinear discrete-time multi-agent systems (MASs) under repetitive operations to achieve bipartite consensus tracking. Here, a quantized distributed model-free adaptive iterative learning bipartite consensus control (QDMFAILBC) approach is proposed based on the dynamic linearization technology, algebraic graph theory, and sector-bound methods. The proposed approach doesn’t require each agent’s dynamics knowledge and only uses the input/output data of MASs, where the data is coded by the logarithmic quantizer before being transmitted. Moreover, we consider both cooperative and competitive relationships among agents. We rigorously prove the stability of the proposed scheme and analyze the effects of data quantization. Meanwhile, we demonstrate that data quantization does not affect the stability of MASs, and bipartite consensus tracking errors can converge to zero with the processing of the proposed scheme, although the data quantization slows the convergence rate. Furthermore, the results are extended to switching topologies, and three simulation studies further validate the effectiveness of the designed method.
Keywords: Data-driven control; Multi-agent systems; Bipartite consensus; Data quantization; Iterative learning; Model-free adaptive control (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321006664
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:412:y:2022:i:c:s0096300321006664
DOI: 10.1016/j.amc.2021.126582
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().