EconPapers    
Economics at your fingertips  
 

Numerical attractors and approximations for stochastic or deterministic sine-Gordon lattice equations

Shuang Yang and Yangrong Li

Applied Mathematics and Computation, 2022, vol. 413, issue C

Abstract: First, we apply the implicit Euler scheme to discretize the sine-Gordon lattice equation (possessing a global attractor) and prove the existence of a numerical attractor for the time-discrete sine-Gordon lattice system with small step sizes. Second, we establish the upper semi-convergence from the numerical attractor towards the global attractor when the step size tends to zero. Third, we establish the upper semi-convergence from the random attractor of the stochastic sine-Gordon lattice equation to the global attractor when the intensity of noise goes to zero. Fourth, we show the finitely dimensional approximations of the three (numerical, random and global) attractors as the dimension of the state space goes to infinity. In a word, we establish four paths of convergence of finitely dimensional (numerical and random) attractors towards the global attractor.

Keywords: Sine-Gordon lattice; Implicit euler scheme; Numerical attractor; Random attractor; Finite-dimensional approximation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321007244
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:413:y:2022:i:c:s0096300321007244

DOI: 10.1016/j.amc.2021.126640

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:413:y:2022:i:c:s0096300321007244