EconPapers    
Economics at your fingertips  
 

A superconvergent B-spline technique for second order nonlinear boundary value problems

Pradip Roul and V.M.K. Prasad Goura

Applied Mathematics and Computation, 2022, vol. 414, issue C

Abstract: In the present work, a high-order numerical scheme based on B-spline functions is developed for solving a class of nonlinear derivative dependent singular boundary value problems (DDSBVP). To derive the method, we first generate a high order perturbation of the original problem by using spline alternate relations. Then, we determine the approximate solution by forcing it to satisfy the resulting perturbed problem at the grid points of the spline. Convergence analysis of the method is established through matrix approach. Four nonlinear examples are considered to demonstrate the accuracy and robustness of the method. The proposed method provides O(h6) superconvergent approximation to the solution of the problem under consideration, where h is the step size. This method produces significantly more accurate results than the two newly developed numerical schemes using the same B-spline functions as used in the present method, namely UCS method and NCS method. Moreover, the computational time of present method is compared with that of NCS method.

Keywords: Boundary value problems; B-spline; Convergence analysis; High-accuracy; CPU time (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321006998
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:414:y:2022:i:c:s0096300321006998

DOI: 10.1016/j.amc.2021.126615

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:414:y:2022:i:c:s0096300321006998