Artificial neural network approximations of Cauchy inverse problem for linear PDEs
Yixin Li and
Xianliang Hu
Applied Mathematics and Computation, 2022, vol. 414, issue C
Abstract:
A novel artificial neural network method is proposed for solving Cauchy inverse problems. Using multiple-layers network as an approximation we present a non-mesh discretization to solve the problems. The existence and convergence are shown to establish the well-posedness of neural network approximations for the Cauchy inverse problems. Numerical results on 2D to 8D cases show that compared to finite element method, the neural network approach easier extends to high dimensional case. The stability and accuracy of the proposed network approach are investigated by the experiments with noisy boundary and irregular computational domain. Our studies conclude that the neural network method alleviates the influence of noise and it is observed that networks with wider and deeper hidden layers could lead to better approximation.
Keywords: Cauchy inverse problem; Artificial neural network; Well-posedness; High dimension; Irregular domain (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321007621
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:414:y:2022:i:c:s0096300321007621
DOI: 10.1016/j.amc.2021.126678
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().