EconPapers    
Economics at your fingertips  
 

Monotonicity and discretization of Urysohn integral operators

Magdalena Nockowska-Rosiak and Christian Pötzsche

Applied Mathematics and Computation, 2022, vol. 414, issue C

Abstract: The property that a nonlinear operator on a Banach space preserves an order relation, is subhomogeneous or order concave w.r.t. an order cone has profound consequences. In Nonlinear Analysis it allows to solve related equations by means of suitable fixed point or monotone iteration techniques. In Dynamical Systems the possible long term behavior of associate integrodifference equations is drastically simplified. This paper contains sufficient conditions for vector-valued Urysohn integral operators to be monotone, subhomogeneous or concave. It also provides conditions guaranteeing that these properties are preserved under spatial discretization of particularly Nyström type. This fact is crucial for numerical schemes to converge, or for simulations to reproduce the actual behavior and asymptotics.

Keywords: Urysohn operator; Monotonicity; Subhomogeneity; Order concavity; Nyström method; Integrodifference equation; Monotone iteration (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321007700
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:414:y:2022:i:c:s0096300321007700

DOI: 10.1016/j.amc.2021.126686

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:414:y:2022:i:c:s0096300321007700