EconPapers    
Economics at your fingertips  
 

Storing, learning and retrieving biased patterns

Elena Agliari, Francesca Elisa Leonelli and Chiara Marullo

Applied Mathematics and Computation, 2022, vol. 415, issue C

Abstract: The formal equivalence between the Hopfield network (HN) and the Boltzmann Machine (BM) has been well established in the context of random, unstructured and unbiased patterns to be retrieved and recognised. Here we extend this equivalence to the case of “biased” patterns, that is patterns which display an unbalanced count of positive neurons/pixels: starting from previous results of the bias paradigm for the HN, we construct the BM’s equivalent Hamiltonian introducing a constraint parameter for the bias correction. We show analytically and numerically that the parameters suggested by equivalence are fixed points under contrastive divergence evolution when exposed to a dataset of blurred examples of each pattern, also enjoying large basins of attraction when the model suffers of a noisy initialisation. These results are also shown to be robust against increasing storage of the models, and increasing bias in the reference patterns. This picture, together with analytical derivation of HN’s phase diagram via self-consistency equations, allows us to enhance our mathematical control on BM’s performance when approaching more realistic datasets.

Keywords: Neural networks; Disordered systems; Machine learning (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321008006
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:415:y:2022:i:c:s0096300321008006

DOI: 10.1016/j.amc.2021.126716

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:415:y:2022:i:c:s0096300321008006