EconPapers    
Economics at your fingertips  
 

Annihilation operators for exponential spaces in subdivision

Costanza Conti, Sergio López-Ureña and Lucia Romani

Applied Mathematics and Computation, 2022, vol. 418, issue C

Abstract: We investigate properties of differential and difference operators annihilating certain finite-dimensional spaces of exponential functions in two variables that are connected to the representation of real-valued trigonometric and hyperbolic functions. Although exponential functions appear in a variety of contexts, the motivation behind this technical note comes from considering subdivision schemes where annihilation operators play an important role. Indeed, subdivision schemes with the capability of preserving exponential functions can be used to obtain an exact description of surfaces parametrized in terms of trigonometric and hyperbolic functions, and annihilation operators are useful to automatically detect the frequencies of such functions.

Keywords: Subdivision scheme; Exponential function preservation; Difference operator annihilating exponentials (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630032100878X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:418:y:2022:i:c:s009630032100878x

DOI: 10.1016/j.amc.2021.126796

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:418:y:2022:i:c:s009630032100878x