EconPapers    
Economics at your fingertips  
 

Unsupervised document image binarization using a system of nonlinear partial differential equations

B.A. Jacobs and T. Celik

Applied Mathematics and Computation, 2022, vol. 418, issue C

Abstract: Partial differential equations have recently been established as a viable framework for image processing, particularly for image binarization. One drawback of this framework is the requirement for manual parameter tuning. In this work we propose a novel development wherein the spatio-temporal dynamics of the thresholding parameter are governed by an additional partial differential equation which is engineered to exhibit desirable traits. While the model can still be tuned manually to achieve optimal results, we show experimentally that the present framework is near optimal for the default choice of parameter, τ. This novel system enforces a smooth evolution of the threshold map while still offering locally adaptive thresholding properties, a requirement for non-uniformly illuminated images. The proposed model is applied to images through a rudimentary finite difference based numerical method due to the parallelizability and provable stability of the method. The proposed work offers an unsupervised binarization scheme and is benchmarked against state-of-the-art methods in the field.

Keywords: Image Processing; Fitzhugh-Nagumo; Finite Difference; Partial Differential Equations (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321008882
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:418:y:2022:i:c:s0096300321008882

DOI: 10.1016/j.amc.2021.126806

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:418:y:2022:i:c:s0096300321008882