EconPapers    
Economics at your fingertips  
 

Evolutionary paths under catastrophes

Rinaldo B. Schinazi

Applied Mathematics and Computation, 2022, vol. 418, issue C

Abstract: We introduce a model to study the impact of catastrophes on evolutionary paths. If we do not allow catastrophes the number of changes in the maximum fitness of a population grows logarithmically with respect to time. Allowing catastrophes (no matter how rare) yields a drastically different behavior. When catastrophes are possible the number of changes in the maximum fitness of the population grows linearly with time. Moreover, the evolutionary paths are a lot less predictable when catastrophes are possible. Our results can be seen as supporting the hypothesis that catastrophes speed up evolution by disrupting dominant species and creating space for new species to emerge and evolve.

Keywords: Evolution; Probability model; Catastrophes (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321008900
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:418:y:2022:i:c:s0096300321008900

DOI: 10.1016/j.amc.2021.126808

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:418:y:2022:i:c:s0096300321008900