EconPapers    
Economics at your fingertips  
 

Another look at portfolio optimization with mental accounts

Wan-Yi Chiu

Applied Mathematics and Computation, 2022, vol. 419, issue C

Abstract: Das et al. (2010, 2018)[11,12] numerically solve the portfolio optimization with mental accounts (POMA) problem, which maps the mean-variance theory and mean-variance utility into a behavioral portfolio theory. We derive a POMA closed-form solution based on the maximum Sharpe ratio and minimum value-at-risk (VaR) rule. The extension offers an alternate equivalence between the POMA problem, the mean-VaR model, and the generalized Sharpe measure. From the manageable VaR-measure perspective, our evidence indicates that many efficient portfolios are statistically equivalent to the global minimum variance portfolio under the estimation risk.

Keywords: Safety-first; Mean-variance portfolio; Mean-VaR model; Sharpe ratio; Value-at-risk; Behavioral portfolio (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321009346
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:419:y:2022:i:c:s0096300321009346

DOI: 10.1016/j.amc.2021.126851

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:419:y:2022:i:c:s0096300321009346