EconPapers    
Economics at your fingertips  
 

Sombor index and degree-related properties of simplicial networks

Yilun Shang

Applied Mathematics and Computation, 2022, vol. 419, issue C

Abstract: Many dynamical effects in biology, social and technological complex systems have recently revealed their relevance to group interactions beyond traditional dyadic relationships between individual units. In this paper, we propose a growing simplicial network to model the higher-order interactions represented by clique structures. We analytically study the degree distribution and clique distribution of the network model. As an important degree-based topological index, Sombor index of the model has been derived in an iterative manner and an approximation method with closed expression is proposed. Moreover, we observe power-law and small-word effect for the simplicial networks and examine the effectiveness of the approximation method for Sombor index through computational experiments. We discover the scaling constant for Sombor index with the evolution of the network when the initial seed network is modeled as an Erdős-Rényi random graph. Our findings suggest the relevance and potential applicability of simplicial networks in modelling higher-order interactions in complex networked systems.

Keywords: Sombor index; Degree distribution; Clique distribution; Distance; Complex network; Random graph; Higher-order interaction (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321009644
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:419:y:2022:i:c:s0096300321009644

DOI: 10.1016/j.amc.2021.126881

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:419:y:2022:i:c:s0096300321009644