EconPapers    
Economics at your fingertips  
 

From networked SIS model to the Gompertz function

Ernesto Estrada and Paolo Bartesaghi

Applied Mathematics and Computation, 2022, vol. 419, issue C

Abstract: The Gompertz function is one of the most widely used models in the description of growth processes in many different fields. We obtain a networked version of the Gompertz function as a worst-case scenario for the exact solution to the SIS model on networks. This function is shown to be asymptotically equivalent to the classical scalar Gompertz function for sufficiently large times. It proves to be very effective both as an approximate solution of the networked SIS equation within a wide range of the parameters involved and as a fitting curve for the most diverse empirical data. As an instance, we perform some computational experiments, applying this function to the analysis of two real networks of sexual contacts. The numerical results highlight the analogies and the differences between the exact description provided by the SIS model and the upper bound solution proposed here, observing how the latter amplifies some empirically observed behaviors such as the presence of multiple and successive peaks in the contagion curve.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321009656
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:419:y:2022:i:c:s0096300321009656

DOI: 10.1016/j.amc.2021.126882

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:419:y:2022:i:c:s0096300321009656