Signed graphs whose spectrum is bounded by −2
Peter Rowlinson and
Zoran Stanić
Applied Mathematics and Computation, 2022, vol. 423, issue C
Abstract:
We prove that for every tree T with t vertices (t>2), the signed line graph L(Kt) has L(T) as a star complement for the eigenvalue −2; in other words, T is a foundation for Kt (regarded as a signed graph with all edges positive). In fact, L(Kt) is, to within switching equivalence, the unique maximal signed line graph having such a star complement. It follows that if t∉{7,8,9} then, to within switching equivalence, Kt is the unique maximal signed graph with T as a foundation. We obtain analogous results for a signed unicyclic graph as a foundation, and then provide a classification of signed graphs with spectrum in [−2,∞). We note various consequences, and review cospectrality and strong regularity in signed graphs with least eigenvalue ≥−2.
Keywords: Adjacency matrix; Foundation of a signed graph; Signed line graph; Star complement; Star partition (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322000777
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:423:y:2022:i:c:s0096300322000777
DOI: 10.1016/j.amc.2022.126991
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().