EconPapers    
Economics at your fingertips  
 

Bifurcation dynamics on the sliding vector field of a Filippov ecological system

Hao Zhou and Sanyi Tang

Applied Mathematics and Computation, 2022, vol. 424, issue C

Abstract: A Filippov crop-pest-natural enemy ecological system with threshold switching surface related to the pest control is developed, which has been completely analyzed by employing the qualitative techniques of non-smooth dynamical systems. The main results reveal that the proposed switching model can have multiple pseudo-equilibria in the sliding region, which result in rich bifurcations in the sliding region including saddle-node, Hopf, Bogdanov-Takens and Hopf-like boundary equilibrium bifurcations. Moreover, the pseudo-periodic solution (or pseudo-homoclinic loop) can be generated in the sliding region through a Hopf bifurcation (or a homoclinic bifurcation), which can collide with the tangential lines at the cusp singularities and finally disappears as parameter varies. This reveals that although the system can stabilize on the sliding region to achieve the purpose of pest control, there are complex dynamical behaviors and sliding bifurcations within the sliding region. Furthermore, as the threshold level varies, the model exhibits the interesting global sliding bifurcations including grazing bifurcation, buckling bifurcation, crossing bifurcation, homoclinic bifurcation to a pseudo-saddle, period-halving bifurcation and chaotic dynamics. This implies that control outcomes are sensitive to the threshold level, and hence it is crucial to choose the threshold level to initiate control strategy.

Keywords: Ecological system; Filippov system; Sliding vector field; Sliding bifurcation; Pseudo-periodic solution; Pseudo-homoclinic loop (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322001382
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:424:y:2022:i:c:s0096300322001382

DOI: 10.1016/j.amc.2022.127052

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:424:y:2022:i:c:s0096300322001382