EconPapers    
Economics at your fingertips  
 

On the dynamics of fractional q-deformation chaotic map

Jie Ran, Yu-Qin Li and Yi-Bin Xiong

Applied Mathematics and Computation, 2022, vol. 424, issue C

Abstract: In this paper, the dynamical behaviors of fractional q-deformation chaotic map are analyzed. Firstly, the fractional q-deformation chaotic map is proposed by employing the Caputo delta difference operator. Secondly, the rich dynamical behaviors, such as numerically stable period (NSP) attractor, quasi-periodic attractor, strange nonchaotic attractor, and chaotic attractor, of the proposed map are discussed by utilizing bifurcation diagram, phase diagram, and 0–1 test. Thirdly, two controllers are designed to study the chaos control and synchronization of the fractional q-deformation chaotic map. Finally, numerical simulations are presented to demonstrate the findings.

Keywords: Discrete fractional calculus; q-deformation; Synchronization; Strange nonchaotic attractor; 0–1 test (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322001394
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:424:y:2022:i:c:s0096300322001394

DOI: 10.1016/j.amc.2022.127053

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:424:y:2022:i:c:s0096300322001394