Single step iterative method for linear system of equations with complex symmetric positive semi-definite coefficient matrices
Akbar Shirilord and
Mehdi Dehghan
Applied Mathematics and Computation, 2022, vol. 426, issue C
Abstract:
In this study, we propose a new single-step iterative method for solving complex linear systems Az≡(W+iT)z=f, where z,f∈Rn, W∈Rn×n and T∈Rn×n are symmetric positive semi-definite matrices such that null(W)∩null(T)={0}. The convergence of the new method is analyzed in detail and discussion on the obtaining the optimal parameter is given. From Wang et al. (2017)[36] we can write W=PTDWP,T=PTDTP, where DW=Diag(μ1,…,μn),DT=Diag(λ1,…,λn), and P∈Rn×n is a nonsingular matrix and λk, μk satisfy μk+λk=1,0≤λk,μk≤1,k=1,…,n. Then we show that under some conditions on μmax=max{μk}k=1n, the new method has faster convergence rate in comparison with recently introduced methods. Finally, some numerical examples are given to demonstrate the efficiency of the new procedure in actual computation.
Keywords: Single step iterative method; Optimal parameter; Complex matrix; Symmetric positive semi-definite matrix; Convergence (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322001953
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:426:y:2022:i:c:s0096300322001953
DOI: 10.1016/j.amc.2022.127111
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().