EconPapers    
Economics at your fingertips  
 

Hermite multiwavelets representation for the sparse solution of nonlinear Abel’s integral equation

Elmira Ashpazzadeh, Yu-Ming Chu, Mir Sajjad Hashemi, Mahsa Moharrami and Mustafa Inc

Applied Mathematics and Computation, 2022, vol. 427, issue C

Abstract: In this research, we study the numerical solution of the singular Abel’s equation of the second kind. Solving this equation is challengeable, because of the nonlinear and singularity. For this purpose, we present an efficient algorithm based on the Galerkin method using biorthogonal Hermite cubic spline multiwavelets (BHCSMWs). Because of the sparse multiscale representations of functions and operators by these wavelets, the CPU time and computer memory are reduced by the proposed algorithm. Also, the convergence analysis of the method is discussed.

Keywords: Abel’s equation; Caputo fractional derivative; Riemann–Liouville fractional derivative; Biorthogonal Hermite cubic spline scaling (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322002454
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:427:y:2022:i:c:s0096300322002454

DOI: 10.1016/j.amc.2022.127171

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:427:y:2022:i:c:s0096300322002454