EconPapers    
Economics at your fingertips  
 

Qualitative analysis on a reaction-diffusion model arising from population dynamics

Jingjing Wang, Yunfeng Jia and Fangfang Li

Applied Mathematics and Computation, 2022, vol. 428, issue C

Abstract: To maintain biodiversity and ecological balance, studying population dynamics of species by establishing different mathematical models is quite important. In this paper, we deal with a reaction-diffusion predation model with mixed functional responses. We are mainly concerned with the coexistence of the species. We firstly give the long-time behaviors of parabolic dynamical system. Secondly, we consider the steady state system, including the priori estimate, existence, uniqueness and asymptotic stability of positive solutions to the system. The result shows that the coexistence of the species depends to a great extent on their intrinsic growth rates, diffusion situations and the predation pressure imposed to preys by predators. The uniqueness and stability results show that the functional response has important effects on the model, which is mainly reflected by the predation behavior of predators. Finally, some numerical simulations are presented to illustrate the theoretical results.

Keywords: Reaction-diffusion model; Coexistence; Stability; Uniqueness; Fixed point index (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322002776
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:428:y:2022:i:c:s0096300322002776

DOI: 10.1016/j.amc.2022.127203

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:428:y:2022:i:c:s0096300322002776