EconPapers    
Economics at your fingertips  
 

On Hosoya’s dormants and sprouts

Salem Al-Yakoob, Ali Kanso and Dragan Stevanović

Applied Mathematics and Computation, 2022, vol. 430, issue C

Abstract: The study of cospectral graphs is one of the traditional topics of spectral graph theory. Initial expectation by theoretical chemists Günthard and Primas in 1956 that molecular graphs are characterized by the multiset of eigenvalues of the adjacency matrix was quickly refuted by the existence of numerous examples of cospectral graphs in both chemical and mathematical literature. This work was further motivated by Fisher in 1966 in the influential study that investigated whether one can “hear” the shape of a (discrete) drum, which has led over the years to the construction of many cospectral graphs. These findings culminated in setting the ground for the Godsil-McKay local switching and the Schwenk’s use of coalescences, both of which were used to show (around the 1980s) that almost all trees have cospectral mates. Recently, enumerations of cospectral graphs with up to 12 vertices by Haemers and Spence and by Brouwer and Spence have led to the conjecture that, on the contrary, “almost all graphs are likely to be determined by their spectrum”. This conjecture paved the way for myriad of results showing that various special types of graphs are determined by their spectra.

Keywords: Cospectral graphs; Characteristic polynomial; Multiple coalescences; Computational enumeration (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322003071
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003071

DOI: 10.1016/j.amc.2022.127233

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-17
Handle: RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003071