EconPapers    
Economics at your fingertips  
 

Adaptive density tracking by quadrature for stochastic differential equations

Ryleigh A. Moore and Akil Narayan

Applied Mathematics and Computation, 2022, vol. 431, issue C

Abstract: Density tracking by quadrature (DTQ) is a numerical procedure for computing solutions to Fokker-Planck equations that describe probability densities for stochastic differential equations (SDEs). In this paper, we extend upon existing trapezoidal quadrature rule DTQ procedures by utilizing a flexible quadrature rule that allows for unstructured, adaptive meshes. We describe the procedure for N-dimensions, and demonstrate that the resulting adaptive procedure can be significantly more efficient than the trapezoidal DTQ method. We show examples of our procedure for problems ranging from one to five dimensions.

Keywords: Stochastic differential equations; Leja points; Numerical methods (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322003721
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322003721

DOI: 10.1016/j.amc.2022.127298

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322003721