Disturbance rejections of interval type-2 fuzzy systems under event-triggered control scheme
P. Selvaraj,
O.M. Kwon,
S.H. Lee and
R. Sakthivel
Applied Mathematics and Computation, 2022, vol. 431, issue C
Abstract:
The problem of robust stabilization of interval type-2 fuzzy systems are studied by using equivalent-input-disturbance estimator-based event-triggered fuzzy control scheme. The estimator of the addressed system is designed by introducing new membership functions and then by using the same premises of the observer, the fuzzy controller is designed. To be precise, sampling-based event-triggered scheme is taken into the account in the controller design to save the communication resources and avoid the existence of Zeno behaviour. Furthermore, to compensate the impact of unknown disturbance, the equivalent-input-disturbance estimator-block is included as an internal loop of closed-loop system. To derive the stability conditions, a novel type of sampling-dependent piece-wise Lyapunov-Krasovskii functional is constructed. Then, by introducing slack matrices, the fuzzy membership function dependent stability criteria are derived. The event-triggered weighting matrix and the gains of controller and observer can be obtained by obtaining the solutions of the developed stability criteria. At last, numerical simulations are given to reflect the effectiveness and applicability of the developed theoretical results.
Keywords: Interval type-2 tagaki-Sugeno fuzzy systems; Equivalent-input-disturbance estimator; Event-triggered controller (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322003976
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322003976
DOI: 10.1016/j.amc.2022.127323
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().