EconPapers    
Economics at your fingertips  
 

Stochasticity of disease spreading derived from the microscopic simulation approach for various physical contact networks

Yuichi Tatsukawa, Md. Rajib Arefin, Shinobu Utsumi, Kazuki Kuga and Jun Tanimoto

Applied Mathematics and Computation, 2022, vol. 431, issue C

Abstract: COVID-19 has emphasized that a precise prediction of a disease spreading is one of the most pressing and crucial issues from a social standpoint. Although an ordinary differential equation (ODE) approach has been well established, stochastic spreading features might be hard to capture accurately. Perhaps, the most important factors adding such stochasticity are the effect of the underlying networks indicating physical contacts among individuals. The multi-agent simulation (MAS) approach works effectively to quantify the stochasticity. We systematically investigate the stochastic features of epidemic spreading on homogeneous and heterogeneous networks. The study quantitatively elucidates that a strong microscopic locality observed in one- and two-dimensional regular graphs, such as ring and lattice, leads to wide stochastic deviations in the final epidemic size (FES). The ensemble average of FES observed in this case shows substantial discrepancies with the results of ODE based mean-field approach. Unlike the regular graphs, results on heterogeneous networks, such as Erdős–Rényi random or scale-free, show less stochastic variations in FES. Also, the ensemble average of FES in heterogeneous networks seems closer to that of the mean-field result. Although the use of spatial structure is common in epidemic modeling, such fundamental results have not been well-recognized in literature. The stochastic outcomes brought by our MAS approach may lead to some implications when the authority designs social provisions to mitigate a pandemic of un-experienced infectious disease like COVID-19.

Keywords: Mathematical epidemiology; SIR process; Multi-agent simulation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322004027
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322004027

DOI: 10.1016/j.amc.2022.127328

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322004027