EconPapers    
Economics at your fingertips  
 

Sixth-order quasi-compact difference schemes for 2D and 3D Helmholtz equations

Zhi Wang, Yongbin Ge, Hai-Wei Sun and Tao Sun

Applied Mathematics and Computation, 2022, vol. 431, issue C

Abstract: Sixth-order quasi-compact difference (QCD) schemes are proposed for the two-dimensional (2D) and the three-dimensional (3D) Helmholtz equations with the variable parameter. Our approach provides the compact mesh stencil for the unknowns, while the noncompact mesh stencil is employed for the source term and the parameter function without involving their derivatives. For the proper interior grid points that are without adjoining the boundary, the sixth-order truncated errors are obtained by the QCD method. Yet the compact scheme is utilized for both of the source term and the parameter function on the improper interior grids that neighbor the boundary, which only reaches the fourth-order local truncated errors. Theoretically, the sixth-order accuracy of the global error by the proposed QCD method is strictly proved for the non-positive constant parameter. Numerical examples are given to demonstrate that the QCD method achieves the global sixth-order convergence for general variable parameters.

Keywords: Helmholtz equation; Variable parameter; Quasi-compact finite difference; Global sixth-order accuracy (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322004210
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322004210

DOI: 10.1016/j.amc.2022.127347

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322004210