EconPapers    
Economics at your fingertips  
 

A new class of higher-ordered/extended Boussinesq system for efficient numerical simulations by splitting operators

Ralph Lteif and Stéphane Gerbi

Applied Mathematics and Computation, 2022, vol. 432, issue C

Abstract: In this work, we numerically study the higher-ordered/extended Boussinesq system describing the propagation of water-waves over flat topography. A reformulation of the same order of precision that avoids the calculation of high order derivatives on the surface deformation is proposed. We show that this formulation enjoys an extended range of applicability while remaining stable. Moreover, a significant improvement in terms of linear dispersive properties in high frequency regime is made due to the suitable adjustment of a dispersion correction parameter. We develop a second order splitting scheme where the hyperbolic part of the system is treated with a high-order finite volume scheme and the dispersive part is treated with a finite difference approach. Numerical simulations are then performed under two main goals: validating the model and the numerical methods and assessing the potential need of such higher-order model. The applicability of the proposed model and numerical method in practical problems is illustrated by a comparison with experimental data.

Keywords: Water waves; Boussinesq system; Higher-order asymptotic model; Splitting scheme; Hybrid finite volume/finite difference scheme (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322004477
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:432:y:2022:i:c:s0096300322004477

DOI: 10.1016/j.amc.2022.127373

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:432:y:2022:i:c:s0096300322004477