EconPapers    
Economics at your fingertips  
 

Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions

Yanyi Nie, Xiaoni Zhong, Tao Lin and Wei Wang

Applied Mathematics and Computation, 2022, vol. 432, issue C

Abstract: Competing behavior spreading dynamics occur not only through pairwise interactions but also through higher-order collective interactions. The simplicial complex is widely adopted to describe the co-existence of pairwise and higher-order interactions. Previous studies have demonstrated that heterogeneous populations and the homophily effects are crucial in shaping the spreading pattern and phase transition. There is still a lack of a theoretical study for competing spread when higher-order interactions, heterogeneous populations, and homophily effects are all considered at the same time. We propose a mathematical model for the competing behaviors A and B to study the effects of homophily on heterogeneous populations with higher-order interactions. The heterogeneity population consists of three groups. Agents who only adopt behavior A or B are denoted as ΩA and ΩB, respectively. Agents in ΩAB may adopt one of two behaviors. To capture the competing behavior dynamics, we offer a theoretical Microscopic Markov Chain Approach (MMCA). We find that increasing 1-simplex transmission rate contributed to the spread of both two behaviors. The saddle point of the system is investigated and it is shown that the observed coexistence is caused by the average result of multiple experiments, revealing that there is still no coexistence present under our model. Decreasing the proportion of the population ΩAB would lead to a significant decrease in the final adopted density of the system. Due to the existence of groups that only adopt behavior A or B, there are always adopted individuals in the system. In addition, the final adopted density is almost consistent across different homophily effects when the two behaviors interact symmetrically. When the proportion of ΩA remains constant, the final adopted density of behavior A decreases significantly as the proportion of ΩB increases, whereas the final adopted density of behavior B remains almost constant. Also, When the proportion of ΩAB is fixed, an increase in the proportion of population ΩA (ΩB) makes the final adopted density of behavior A (behavior B) to increase with it.

Keywords: Simplicial complex; Competing behaviors; Homophily effects; Heterogeneous population (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322004544
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:432:y:2022:i:c:s0096300322004544

DOI: 10.1016/j.amc.2022.127380

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:432:y:2022:i:c:s0096300322004544