EconPapers    
Economics at your fingertips  
 

Vertex-degree-based topological indices of oriented trees

Sergio Bermudo, Roberto Cruz and Juan Rada

Applied Mathematics and Computation, 2022, vol. 433, issue C

Abstract: Let D be a digraph with arc set A(D). A vertex-degree-based topological index φ is defined in D asφ(D)=12∑uv∈A(D)φdu+,dv−,where du+ is the outdegree of vertex u, dv− is the indegree of vertex v, and φx,y is a (symmetric) function. We study in this paper the extremal value problem of a VDB topological index φ over the set of orientations of a tree T. We show that one extreme value is attained in sink-source orientations, and when the tree has no adjacent branching vertices, the other extremal value occurs in balanced orientations. In the case the tree has adjacent branching vertices, considering the double-star tree, we show that a VDB topological index φ may not be invariant over the set of balanced orientations, and the extremal value can occur in non-balanced orientations.

Keywords: VDB Topological indices; Digraphs; Orientations of trees; Extremal values (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322004696
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:433:y:2022:i:c:s0096300322004696

DOI: 10.1016/j.amc.2022.127395

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:433:y:2022:i:c:s0096300322004696