Model-free finite-horizon optimal tracking control of discrete-time linear systems
Wei Wang,
Xiangpeng Xie and
Changyang Feng
Applied Mathematics and Computation, 2022, vol. 433, issue C
Abstract:
Conventionally, the finite-horizon linear quadratic tracking (FHLQT) problem relies on solving the time-varying Riccati equations and the time-varying non-causal difference equations as the system dynamics is known. In this paper, with unknown system dynamics being considered, a Q-function-based model-free method is developed to solve the FHLQT problem. First, an augmented system consisting of the controlled system and the desired trajectory system is formulated, and the FHLQT problem transforms to the finite-horizon linear quadratic regulator (FHLQR) problem with the augmented system. Then, a time-varying Q-function which depends explicitly on the control input is defined. With the defined time-varying Q-function, a model-free finite-horizon control method is developed to approximate the solutions of the time-varying Riccati equations of the transformed FHLQR problem. At last, simulation studies are carried out to verify the validity of the developed method.
Keywords: Q-function; Finite-horizon; Linear quadratic tracking; Model-free (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630032200474X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:433:y:2022:i:c:s009630032200474x
DOI: 10.1016/j.amc.2022.127400
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().